1 電子による X 線の散乱強度

図1において,原点 Oにある電子に,Y'Z面内に振動面をもった平面偏光 X線が Z方向より入射したとき,その振動数 ν と同じ振動数で強制振動された電子よりでる2次 X線の強度は,Oよりの距離r,Y'軸よりの極角 φ 方向の P点で

$$I(\varphi, r) = I_0 \frac{e^4}{m^2 c^4} \frac{1}{r^2} \sin^2 \varphi$$
 (1.1)

で与えられる.ただし, I_0 は入射 X 線の強度, すなわち 1sec に通過する断面積 1cm² あたりの エネルギー,またはフォトンの数. $e = 4.8 \times 10^{-10}$ e.s.u. :電子の電荷. $m = 9.1 \times 10^{-28}$ g :電子の質量. $c = 3.0 \times 10^{10}$ cm/sec :光速度. ところがふつうの入射 X 線はあらゆる振動面を もった自然光であるから, $\sin^2 \varphi$ は図 2 の ω につ いて平均しなければならない.

$$\frac{1}{\pi} \int_0^\pi \sin^2 \varphi d\omega = \frac{1}{\pi} \int_0^\pi \left(1 - \sin^2 \chi \cos^2 \omega \right) d\omega$$
$$1 + \cos^2 \chi \tag{1.2}$$

$$\frac{1+\cos^2\chi}{2} \tag{1.2}$$

$$I_e = I_0 \frac{e^4}{m^2 c^4} \frac{1}{r^2} \frac{1 + \cos^2 \chi}{2}$$
(1.3)

これが1個の電子の,散乱角 χ 方向の散乱強度で, $(1+\cos^2\chi)/2$ を偏光因子とかトムソン因子といって,散乱 X 線の偏光の程度を表す ($e^4/m^2c^4 = 7.9 \times 10^{-24} \text{cm}^2$)

図 1: 電子による X 線の散乱

図 2: X 線の偏光の考慮

2 原子による X 線の散乱強度

原子番号 Z の原子に X 線を入射すると, +Ze の電荷をもった原子核と, そのまわりの Z 個の電子は強制振動されて 2 次 X 線を出す.しかし (1.3)よりわかるように,散乱 X 線 の強度は散乱粒子の質量の 2 乗に逆比例するから,原子核の効果は無視してよい.

1個の電子による散乱振幅は $\sqrt{I_e}$ であるから,もしZ個の電子が原子核の位置に集中した仮想的な原子による散乱振幅は $Z\sqrt{I_e}$ になり,その強度は Z^2I_e となる.

^{*}柿木二郎先生が集中講義されたときの講義録.図は先生の原稿のまま貼り付けました.

実際の原子では Z 個の電子は電子雲として,原子核よりベクトル ρ のところで電荷密度 $eu(\rho)$ で分布している.かつその分布範囲は X 線の波長 1.5^A と同程度にひろがっているから,異なった位置から出る 2 次 X 線は干渉して弱め合う.電子雲の分布を球状対称として干渉効果を計算すると,散乱角 χ 方向に原子より散乱される 2 次 X 線散乱振幅は

$$\Phi(s) = \sqrt{I_e} \int_0^\infty 4\pi \rho^2 u(\rho) \frac{\sin s\rho}{s\rho} d\rho \qquad \text{ttt} \ s = \frac{4\pi}{\lambda} \sin \frac{\chi}{2}$$
(2.1)

となるが,この式の積分部分を

$$f(s) = \int_0^\infty 4\pi \rho^2 u(\rho) \frac{\sin s\rho}{s\rho} d\rho \qquad (2.2)$$

とおくと,原子による散乱 X 線の強度は (2.1) 式を2 乗 して

$$I_a = I_e(s)f^2(s) (2.3)$$

となる.図3は炭素に対するf(s)曲線を示す.

f(s)は電子の分布関数 $u(\rho)$ に関係するから原子構造因子 (atomic structure factor or Atomformfactor) という.また $\sqrt{I_e}$ が電子 1 個による散乱振幅で,これをf(s) 倍したものが原子による散乱振幅になっているか

図 3: 炭素の f(s) 曲線

ら,原子散乱因子 (atomic scttering factor) ともいい, s 方向 (散乱方向) から見たときの 原子の有効電子数とも考えられる.s = 0の直進方向では

$$f(0) = \int_0^\infty 4\pi \rho^2 u(\rho) d\rho = Z$$
 (2.4)

となり全電子が有効であるが, $s \neq 0$ の方向では図3よりf(s) < Zとなる.

3 結晶による X 線の回折と Bragg 式

結晶は原子が3次元的に規則正しく配列した固体であるから,ミラー指数 $(hk\ell)$ をもった 1 枚の原子網面上には同種の原子が規則正しく配列し,かつ全く同じ面が面間隔 (spacing) dを隔てて上下に積重なっている.図4ではこれらの面の切口を E_0, E_1, E_2, E_3 などとして ある.この面に,ある入射角で入射した X 線は,面上の各原子で散乱され, $\sqrt{I_e}f$ の振幅 をもった多くの2次波を出す.これらの2次波はハイゲンスの原理により,反射条件を満 足する方向では位相差がないから強めあって強い反射 X 線を出す.

このような面が間隔 d で積重なっているときは、それぞれの面から出るはずの反射 X 線 は光路差をもつ、図 4 で E_0 から出る反射線と E_1 から出る反射線の光路差を Δ とすると、 入射角の余角を θ として

$$\Delta = N_1 O_1 + O_1 M_1 = 2N_1 O_1 = 2d \sin \theta$$
(3.1)

となる $. E_p$ 面よりの反射線との光路差は $p\Delta$ である . ゆえに

 $2d\sin\theta = n\lambda$, λ : 波長, $n = 0, \pm 1, \pm 2, \ldots$ (3.2)

の関係があるときは,すべての面からの反射線はたが いに強め合って

$$\chi = 2\theta \tag{3.3}$$

を満たす散乱方向に強い反射線を出す.この式を Bragg 式といい, X線回折の1つの基本式である.すなわち, X線は,光の場合と同様に,原子網面で反射されるが, 光の場合と異なり,任意の入射角でなく,(3.2)式を満 足する角 θ の余角を入射角とするときのみ選択的に反 射する.この θ を Bragg角, n を Braggの次数とい う.Bragg 式は反射の必要条件であるが,反射 X線の 相対強度とか,nが整数からずれた方向の強度を与える には無力である.

図 4: 結晶面による反射

4 一般強度式

結晶により散乱された X 線の強度は $\chi = 2\theta \ge (4.3)$ 式 で結ばれた (ξ, η, ζ) 方向 (§5 参照) において, (4.1) 式の仮 定のもとで, (4.2) 式で与えられる.

- i) 試料には吸収がない
- ii) どの単位格子でも,その内部の 原子配列は同じである.
- iii) 結晶の形は*a*,*b*,*c*方向にそれぞれ
 L,M,N個の単位格子をもった平
 行六面体の形をしている.

図 5: 単位格子

$$I(\xi,\eta,\zeta) = I_e |F(\xi,\eta,\zeta)|^2 G_1(\xi) G_2(\eta) G_3(\zeta) , \quad \left(I_e = I_0 \frac{e^4}{m^2 c^4} \frac{1}{r^2} \frac{1+\cos^2 \chi}{2}\right) \quad (4.2)$$

(4.1)

$$\frac{s}{2\pi} = \frac{2\sin\theta}{\lambda} = \frac{1}{d} = \sqrt{\frac{\xi^2}{a^2\sin^2\beta} + \frac{\eta^2}{b^2} + \frac{\zeta^2}{c^2\sin^2\beta} - \frac{2\xi\zeta\cos\beta}{ac\sin^2\beta}} \quad (\texttt{\texttt{I}ABS})$$
(4.3)

$$G_1(\xi) = \frac{\sin^2 \pi L\xi}{\sin^2 \pi \xi}, \ G_2(\eta) = \frac{\sin^2 \pi M\eta}{\sin^2 \pi \eta}, \ G_3(\zeta) = \frac{\sin^2 \pi L\zeta}{\sin^2 \pi \zeta} \quad \text{Laue}(\mathbf{O} \square \mathbf{f}) \ \mathbf{g} \mathbf{g}$$
(4.4)

$$|F(\xi,\eta,\zeta)|^{2} = \left\{\sum_{j=1}^{n} f_{j} \cos 2\pi (\xi x_{j} + \eta y_{j} + \zeta z_{j})\right\}^{2} + \left\{\sum_{j=1}^{n} f_{j} \sin 2\pi (\xi x_{j} + \eta y_{j} + \zeta z_{j})\right\}^{2}$$
(4.5)

 (x_j, y_j, z_j) は図 5 に示すように単位格子内で第 j 番目の原子が R にあるとき,図のような 作図をして

$$OP = X_j = ax_j, PQ = Y_j = by_j, QR = Z_j = cz_j$$
(4.6)

で与えられる.すなわちベクトル \overrightarrow{OR} のa, b, c成分 (X_j, Y_j, Z_j) をそれぞれの方向の周期 を単位として計った,原子の座標またはパラメタといわれるものである. $\S17$ で述べるように Laue 関数は

$$\xi = h, \ \eta = k, \ \zeta = \ell, \ \mathcal{O}$$
とき, $G_1(h)G_2(k)G_3(\ell) = L^2 M^2 L^2$ (4.7)

となり,整数以外では実際上無視できる.後述のように, (4.7)式は Bragg 式 (3.2) に対応 し,反射 X 線が出る条件であるが,出る限りにおいては,その強度は I_e による補正後に は, $|F(h, k, \ell)|^2$ に比例する.すなわち $F(h, k, \ell)$ は原子配列に依存するので,構造因子(振 幅)(structure factor) といわれ構造解析上の基本式を与える.

5 ξ, η, ζ の意味

前節の一般強度式を導くとき, *ξ*, *η*, *ζ* は 3 方向の周期 *a*, *b*, *c* に対して

$$\boldsymbol{a} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = \xi \lambda, \quad \boldsymbol{b} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = \eta \lambda, \quad \boldsymbol{c} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = \zeta \lambda$$
 (5.1)

の関係を使って導いたものである.ここに s, s₀ は

図 6 では *a* 隔てた 2 個の散乱体 O と P₁ と入射方向 *s*₀ の作る平面が紙面で,散乱方向 *s* は紙面より手前に出 ている.図のように角をとると,(5.1)の第1式は

$$a(\cos \sigma_1 - \cos \omega_1) = ON_1 - P_1 M_1 = \Delta_a = \xi \lambda \quad (5.3)$$

となる.(5.1)式の第2式,第3式についても同様で,結 局, ξ は周期 a隔てた2個の散乱体から出る2次波の光 路差 Δ_a が波長 λ の何倍であるかという倍数を与える. 同様に η , ζ はそれぞれ周期b, c隔てた2個の散乱体 から出る2次波の光路差 Δ_b , Δ_c の波長に対する倍数 になる.したがって,

図 6: *a* の散乱条件

$$\xi = h($$
整数), $\eta = k($ 整数), $\zeta = \ell($ 整数) ならば (5.4)

$$\boldsymbol{a} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = h\lambda, \quad \boldsymbol{b} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = k\lambda, \quad \boldsymbol{c} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = \ell\lambda$$

$$(5.5)$$

となり,3 周期とも2次波の光路差が波長の整数倍になってたがいに強めあい,(5.5)を満足するs方向に強い回折X線を出す.(4.7)と(3.2)はこの場合になっている.(5.5)をLaueの条件といい, h, k, ℓ をLaueの次数という.

図6では、入射方向に対してaは固定しているから、散乱方向sは、Oを頂点とし、OP1

を軸とし , 半頂角が σ_1 である円錐のどの母線と一致してもよい . b,c についても対応す る円錐があるから,これら3個の円錐が共有する方向に回折 X線が出る. h,k,ℓ の組み合 わせに対応して回折 X 線が出ているのに対してどのような形のフイルムをどこにおくかに より回折写真は異なる.

1次元格子による回折現象の観察 6

Slide 1[†] の P-1 と P-2 は線状 1 次元格子で, Slide 2[‡] の P-3 と P-4 は点状 1 次元格子 である.線状1次元格子についての詳細は述べることはできないが,その見所は

などの点である.これに対して点状1次元格子についての見所は

2-2 回折平行線群の線間隔はもとの点間隔に逆比例する.

Slide 2 の点状 1 次元格子については, 点列方向の周期 a とすると,

(4.4) 式で
$$M = N = 1$$
 とみて $G_1(\xi) = \frac{\sin^2 \pi L\xi}{\sin^2 \pi \xi}$, $G_2(\eta) = 1$, $G_3(\zeta) = 1$ (6.3)

(4.5) 式で
$$j = 1$$
 のみで $x_1 = y_1 = z_1 = 0$, $|F(\xi, \eta, \zeta)|^2 = f^2$ (6.4)

$$(4.2) \ \vec{z} \quad \to \quad I(\xi,\eta,\zeta) = I_e f^2 \frac{\sin^2 \pi L\xi}{\sin^2 \pi \xi} \quad \to \quad B^2 \frac{\sin^2 \pi L\xi}{\sin^2 \pi \xi} \tag{6.5}$$

$$(5.3) \ \vec{\Xi} \quad \to \quad a(\cos \sigma_1 - \cos \omega_1) = \xi \lambda \tag{6.6}$$

1%

 $\mathcal{B}^{2}(\chi)/\mathcal{B}^{2}(o)$

0.5

60

(6.5) 式における *I_ef²* は原子による X 線の散乱 で、散乱角 χ に対して図3のような強度経過をと るのに反して, Slide では小円の孔による光の回 折であるから

$$B^{2}(\chi) = 4 \left\{ \frac{J_{1}((2\pi/\lambda)R\varepsilon\sin\chi)}{(2\pi/\lambda)R\varepsilon\sin\chi} \right\}^{2}$$
(6.7)

R:小円孔の半径, ε :カメラ撮影の縮小率, J_1 : 図 7: 孔による回折強度 第1次ベッセル関数,に置き換える必要がある. 図7にその強度経過をしめす.図3とくらべて著しく異なる点は,図7では

$$\frac{R\varepsilon}{\lambda}\sin\chi = 0.61, \ 1.12, \ 1.62, \dots$$
などで , $B^2(\chi) = 0$ (6.8)

[†]P-1 は間隔 3mm の平行線列を約 1/30 に縮小撮影して得られたフイルム. P-2 は P-1 の 2 倍.

[‡]P-3 は間隔約 0.1mm, P-4 は P-3 の 2 倍の間隔をもった点列のフイルム

となる点である.その結果,回折平行線群の各線は短い線分になる.

実際に Slide を目の直 前において遠方の点光源 をみるときは,近似的に (6.6) 式で $\omega_1 = 90$ °と みてよい.したがって, $a\cos\sigma_1 = h\lambda$ の方向に h次の線分がみえる.す なわち,図6の円錐は, $h = 0, \pm 1, \pm 2, \dots$ に対し て図8のようになる.そ の結果,入射方向に垂直 においた平面スクリーン には,円錐とその軸に平

図 8:1 次元点列の回折条件

行な平面の交線として,図8-(2)のようにh = 0で直線, $h \neq 0$ で双曲線の線分がみられる.さらに実際みられるのは,直射点を中心とした僅かな散乱角範囲であるから,近似的には,その断面として図8-(3)を考えると

(6.6) で,
$$\omega_1 = 90 \circ \sigma_1 = 90 \circ - \chi$$
, として, $a\varepsilon \sin \chi = h\lambda$ (6.9)

となる.スクリーンまでの距離をL,スクリーン上直射点よりh次の線分までの高さを A_h とすると,微小角 χ に対して,(6.9)を使って

$$A_h = L \tan \chi \cong L\chi \cong L\lambda \frac{h}{a\varepsilon}$$
(6.10)

となり, (6.2) のみならず (6.1) の逆関係が理解できる.

以上はあくまでも近似的な話として逆関係を述べてきた.しかし (6.6) 式の関係を正確 に理解するためには,正確な1次元逆格子(正確には実空間の1次元格子に付随した逆格 子(reciprocal lattice))の概念を導入することが大切である.

7 1次元逆格子

1次元逆格子を正確に理解するために,(6.6)式を次のように変形する.

$$\frac{1}{\lambda}\cos\sigma_1 = \frac{1}{\lambda}\cos\omega_1 + \frac{h}{a} \tag{7.1}$$

図 9 において, OP₁ とこれを軸とした円錐 O は図 6 と同じものである.OP₁ 直線上, O より h/a の点 Q_h を通り OP₁ に垂直な平面を E_h^a とする.他方原点 O より入射方向に逆 進して, O より $1/\lambda$ の点を A とし, A を中心として半径 $1/\lambda$ の球 A を画く.この球 A と 平面 E_h^a の交線は小円になるが, この小円に A より垂線 AC_h を下ろすと C_h はこの小円の 中心になる.この小円 C_h を底とし, A を頂点とする円錐 A の半頂角を σ'_1 とする.

入射方向との交点である.このような作図より

図 9: エワルドの反射球

$$\frac{1}{\lambda}\cos\sigma_1' = AC_h = AS_0\cos\omega_1 = (AO + OS_0)\cos\omega_1$$
$$= \left(\frac{1}{\lambda} + \frac{OQ_h}{\cos\omega_1}\right)\cos\omega_1 = \frac{1}{\lambda}\cos\omega_1 + \frac{h}{a}$$
$$\sigma_1' = \sigma_1$$
(7.4)

すなわち円錐
$$O$$
 と円錐 A はその軸が平行であるのみならず、
対応する各母線はたがいに平行になる.

ここで注意すべきことは E^{*a*}_{*h*} 平面は点列 *a*(周期 *a* をもった点列の意味) に付随し, *h* の いろいろの値を考えると正確に等間隔平行平面群になっている.これに反して,球A は入射 X 線の方向と,用いた X 線の波長だけできまる.このようなことより次の重要な結論 が得られる.

- (I) 点列*a*をある位置においたときは、これに付随した等間隔平行平面 群 E^et をその位置においたと考える.
- (II) ある波長の X 線をある方向に入射したときは,その方向と波長で 切る球 A を考える.
- (III) E_h^a 平面群と球 A の幾何学的関係によって両者が交わるものだけに ついて有限個の円錐 A が求められる. (7.7)
- (IV) 得られた円錐群の共通頂点 A を O に平行移動したとき, すべての 母線方向に回折 X 線が出る.
- (V) こうして円錐状に出ている回折 X 線群に対して,どのような形の
 フイルムをどこに置くかによって撮影される回折写真像は異なる.

以上の結論は X 線回折の基本であって、2 次元点列や3 次元点列(結晶)になっても同じことである.(I)の等間隔平行平面群 $E_h^a \& 1 \chi$ 元点列格子の逆格子といい、点列格子に固有のもので、その周期 a できまる.(II)の球 A を結晶の場合の言葉をそのまま引用して、エワルドの反射球 (Ewald's sphere of reflection)という.(IV)は内容を理解した後においては、平行移動をやめて、A で O を兼ねさせて、円錐 A の母線方向に回折 X 線が出るという表現が使われる.さらに(III)も考えると、「エワルドの反射球と逆格子 E_h^a の交線である小円 $C_h \& A$ からフイルム上に投影したものが回折写真である」という表現もよく使われる.この意味で A を発散点 (Ausbreitungspunkt)という.

1 次元点列の逆格子がわかれば,2 次元点列の逆格子は直ちに理解できる.すなわち2次 元点列は2 つの周期 *a* と *b* をもつから,それぞれの点列に付随した1次元逆格子である. 等間隔い平行平面群が2 組考えられる.*a* に関するものを E_h^a , *b* に関するものを E_h^b とす

る.図10には2種の周期a, b & e 2辺とする平行四辺形, すなわち2次元点列の単位格子を 印で描いてある.aとbのなす角を γ とする.点列aの1次元逆格子はaに 垂直でON₁ = 1/aの等間隔平行平面群 E_0^a , E_1^a , E_2^a ... などを与える.点列bについてもbに垂直でON₂ = 1/bの等間隔平行平面群 E_0^b , E_1^b , E_2^b ...などを与える.2次 元回折格子では,(5.5)のLaueの条件のうち,最初の 2条件を満足しなければならないから, E_h^a 面にあって 同時に E_k^b 面にもあるためには,両者の交線のみ有効 である.すなわち図10でO,P₁,P₂,...,Q₀,Q₁,Q₂,..., R₀,R₁,R₂,...点を通り紙面に垂直な平行線群が有効で ある.作図より

$$OP_{1} = \frac{ON_{1}}{\sin \gamma} = \frac{1}{a \sin \gamma}, OQ_{0} = \frac{ON_{2}}{\sin \gamma} = \frac{1}{b \sin \gamma}$$
$$\texttt{BLV}, \quad \angle P_{1}OQ_{0} = \pi - \gamma \qquad (8.1)$$

の関係を得る.すなわち

図 10:2 次元逆格子の構成

$$\boldsymbol{a}^* = \overrightarrow{\mathrm{OP}_1}$$
, $\boldsymbol{b}^* = \overrightarrow{\mathrm{OQ}_0}$ (8.2)

とおくと,図10における・印の各点は*a** と*b** を2辺 とした平行四辺形を基本とした周期配列をとる.この 平行四辺形は(8.1)の関係より

$$|\boldsymbol{a}^*|$$
: $|\boldsymbol{b}^*| = b$: \boldsymbol{a} , $\angle \widehat{\boldsymbol{a}^* \boldsymbol{b}^*} = \pi - \gamma$ (8.3)

の関係にある.このようなときこの平行四辺形はもと の平行四辺形と逆であるという.

すなわち

2次元逆格子は、もとの2次元格子の面内にあって、その単位格子
 平行四辺形と逆の関係にある平行四辺形の各頂点を通り、もとの格
 子面に垂直な平行線群になる。

実際の回折図形は,図11にしめすように,この平行線群がエワルドの反射球を貫く点と発散点Aを結ぶ線(破線)に平行にOより回折線(実線)を出す(図11では左方に出る

図 11: 回折点

回折線は省略してある.) この場合も

 2 次元逆格子である平行線群がエワルドの反射球面を貫く点を ■ 発散点 A よりフイルム上に投影した回折写真が得られる. (8.5)

ということができる. E_h^a 平面と E_k^b 平面の交線は指数 h, k で区別される. Slide 3^{\S} で P-5 は横長の矩形の単位格子で, P-6 も横長の矩形であるが, P-5 の矩形にく らべて縦は同じであるが,横は 1.5 倍になっている. 従ってその回折像はいずれも縦長の 矩形で,回折斑点の縦の間隔は同じであるが,横の間隔は P-6 の方が P-5 の 2/3 に縮まる. 同じ Slide 3 の P-7 は横長の平行四辺形であるが,横の点列の間隔は P-6 の横と同じであ る.したがって P-6 と P-7 の回折像を比べると, P-6 のとなり合った縦の回折斑点列のう ち右側のものが左側の列に対して相対的に少し下がる.すなわち縦長の平行四辺形の回折 斑点が見られる.

すなわちこの Slide の見所は

以上の考察の結果3次元逆格子として次の結論を得る.

3次元の周期*a*, *b*, *c*をもった結晶の逆格子は,たとえば*a*とbの2周期で できる2次元逆格子である平行線群と,第3の周期*c*の点列による1次元逆 格子である平行平面群との交点として,平行6面体の各頂点を基本とした3 次元点列の格子になる.

9 3次元逆格子

a, b, c, 3周期に対する逆格子は前節の終わりに述べたよう に,それぞれに垂直な E_h^a, E_k^b, E_ℓ^c の3組の平行平面群の交点の 集合である.この逆格子点の一つを H として図 12 にかく. H は E_h^a 平面上にあって,平面 E_h^a の垂線が ON₁ であるから, $\overrightarrow{OH} = h$ ベクトルのこの垂線への投影はつねに ON₁ = h/a に等しい.ゆ えに a/a が $\overrightarrow{ON_1}$ の単位ベクトルになることを考えると

$$(\boldsymbol{h} \cdot \boldsymbol{a}/a) \qquad (\boldsymbol{h} \cdot \boldsymbol{a}) = h \qquad (9.1)$$

同様に H は E_k^b 平面上にもあるし,同時に E_ℓ^c 平面上にもあるから,全く同様にして

$$(\boldsymbol{h} \cdot \boldsymbol{a}) = h$$
, $(\boldsymbol{h} \cdot \boldsymbol{b}) = k$, $(\boldsymbol{h} \cdot \boldsymbol{c}) = \ell$ (9.2)

を得る . (h k l) でこの逆格子点の座標とする .

図 12:3 次元逆格子点

[§]P-5 は縦約 0.1mm, 横約 0.12mm, P-6 は縦は P-5 と同じ, 横は P-5 の 1.5 倍, P-7 は横の間隔は P-6 の と同じである.

この h, k, ℓ をミラー指数とする $(h k \ell)$ 面を図 13 で E 面とする.このような面の定義から, E とa, b, c との交点を P,Q,R とすれば

$$\overrightarrow{OP} = \frac{a}{h} , \quad \overrightarrow{OQ} = \frac{b}{k} , \quad \overrightarrow{OR} = \frac{c}{\ell}$$
 (9.3)

O より E 面へ垂線 ON を下し, ON = d, \overrightarrow{ON} 方向の単位ベクト ルを n とすれば

$$\left(\frac{a}{h}\cdot n\right) = \left(\frac{b}{k}\cdot n\right) = \left(\frac{c}{\ell}\cdot n\right) = d \qquad (9.4)$$

$$\left(\frac{n}{d}\cdot a\right) = h, \ \left(\frac{n}{d}\cdot b\right) = k, \ \left(\frac{n}{d}\cdot c\right) = \ell \qquad (9.5)$$

$$(9.5)$$

(9.5) と (9.2) をくらべて , $h = \frac{n}{d}$ (9.6)

a.

すなわち

$$\left[egin{array}{c} \mathrm{O} \, {f L} \, {f U} \, {f M} \, {f K} \, \ell \, (h \, k \, \ell) \, {f C} \, {f S} \, {f C} \, {f V} \, {f h} \, h \, t \, t \, , \, {f C} \, {f O} \, h k \ell \, {f E} \, {f G} \, {f B} \, t \, {f S} \, {f G} \,$$

という大切な結果が得られる.また別の言葉でいうと

「結晶の (hkℓ) 面の垂線方向に原点より,その面間隔の逆数に比例する点で この面を代表させたものをこの面の逆格子点といい,結晶が原子の周期的 な配列であることを反映して,各面の逆格子点もまた規則正しい配列をし, これを逆格子という.

結晶の格子が3周期 a, b, cを基本とした規則正しい配列をしている結果,任意の格子点に至るベクトルは

$$\boldsymbol{R}_p = p\boldsymbol{a} + q\boldsymbol{b} + r\boldsymbol{c}, \qquad p, q, r: 0, \pm 1, \pm 2, \dots$$
(9.9)

の型のベクトルで表された.これに反映して逆格子点も規則正しい配列をしているから, 任意の逆格子点に至るベクトル h も

$$\boldsymbol{h} = h\boldsymbol{a}^* + k\boldsymbol{b}^* + \ell\boldsymbol{c}^* \tag{9.10}$$

の型のベクトルで表されるような基本ベクトルの組 a^* , b^* , c^* はないものか. このためhにa, b, cを順次かけて (9.2) とくらべると

$$\begin{pmatrix} \mathbf{h} \cdot \mathbf{a} \end{pmatrix} = h = h(\mathbf{a} \cdot \mathbf{a}) + k(\mathbf{a} \cdot \mathbf{b}) + \ell(\mathbf{a} \cdot \mathbf{c}) \\ (\mathbf{h} \cdot \mathbf{b}) = k = h(\mathbf{b} \cdot \mathbf{a}) + k(\mathbf{b} \cdot \mathbf{b}) + \ell(\mathbf{b} \cdot \mathbf{c}) \\ (\mathbf{h} \cdot \mathbf{c}) = \ell = h(\mathbf{c} \cdot \mathbf{a}) + k(\mathbf{c} \cdot \mathbf{b}) + \ell(\mathbf{c} \cdot \mathbf{c})$$

$$\end{cases}$$

$$(9.11)$$

これが任意の h, k, l に対して恒等的に成立するためには, たとえば a* について

$$(\boldsymbol{a} \cdot \boldsymbol{a}) = 1, \quad (\boldsymbol{a} \cdot \boldsymbol{b}) = (\boldsymbol{a} \cdot \boldsymbol{c}) = 0$$
 (9.12)

$$a^* \perp b, \quad a^* \perp c, \qquad a^* = x[b \times c]$$

$$(9.13)$$

これを初めの関係に代入して $(a \cdot [b \times c]) = v(単位格子の体積)$ になることを参照すると, x v = 1より

$$a^* = \frac{[b \times c]}{v}$$
 同様に, $b^* = \frac{[c \times a]}{v}$ $c^* = \frac{[a \times b]}{v}$. (9.14)

これらをもとのベクトル *a*, *b*, *c*の逆ベクトルという.すなわち逆格子は,逆ベクトル *a**, *b**, *c** を3 稜とする平行六面体の積み重なりとして表され,その各頂点が逆格子点で あるから,*h*は*a**, *b**, *c** を使って (9.10)の型のベクトルで表される.

10 エワルドの構成とBragg式

3 次元の点列, すなわち結晶では逆格子点が問題になる.これと回折との関係は, 1 次 元点列のときの図 9 や, 2 次元点列のときの図 11 と全く同様にである.すなわち, 図 14

にしめすように, O にある結晶の位置をうまく調節してこの結晶に付随したある逆格子点 H が丁度うまくエワルドの反射球上にのれば, 図9 や図11の場合と同様に, AH に平行に O より OS 方向に Laue の条件 (5.5)を満足して回折 X 線を出す. すなわち

図 14: エワルドの構成

(5.5) と (9.2) をくらべて

$$\frac{s-s_0}{\lambda} = h \quad \text{stat} \quad k - k_0 = h \quad \left(\text{ttt} \quad k = \frac{s}{\lambda}, \ k_0 = \frac{s_0}{\lambda} \right)$$
(10.2)

の関係を得るが,この関係は,図14で

$$\boldsymbol{k} = \overrightarrow{AH}, \quad -\boldsymbol{k} = \overrightarrow{OA}, \quad \boldsymbol{h} = \overrightarrow{OH}$$
 (10.3)

の3個のベクトルが閉じて △OAH を作っているということに一致する.(9.6)や(9.7)を 考えると,逆格子点Hをもつ(*hk*ℓ)面はOHに垂直なE面で表すことができる.図14の 作図よりわかるように

であることがすぐわかるから , △OBH より

OB sin
$$\theta$$
 = OH, OB = $\frac{2}{\lambda}$, OH = $\frac{1}{d}$, 2d sin θ = λ (10.5)

となり, Bragg の式 (3.2) が得られる.したがって Bragg の次数 n は, Laue の次数または 面指数 h, k, ℓ の最大公約数になると考えられる.図 14 よりあきらかに,入射 X 線 AO は 結晶の ($hk\ell$) 面 E で反射されて \overrightarrow{OS} 方向に反射 X 線を出している形になっている.すなわ ち,逆格子点がエワルドの反射球上にのったときだけ,対応する ($hk\ell$) 面が入射 X 線を反 射して \overrightarrow{AH} に平行な \overrightarrow{OS} 方向に反射 X 線を出すから,この球は反射を規定する球として反 射球とよばれたわけである.このように

- (I) 結晶といえば逆格子を考え
- (II) 入射 X 線といえばエワルドの反射球を考え
- (III) 両者の幾何学的相対関係できまる反射球上にのった逆格子点
 (10.6)

 から反射 X 線がきまる .
 (10.6)
- (IV) こうして出た反射 *X* 線をどのような形のフイルムをどこにお くかによって *X* 線回折写真像がきまる.

これは (7.7) の 5 項目をまとめ直したものである. (7.7) の (III),(IV) は (10.6) では (III) にまとめられた. このような考えをエワルドの構成 (Ewald's construction) という.

[注] 図 14 で OH を垂直 2 等分する平面を考えると,これは物性論における バンド理論における 1 つの Brillouin zone boundaryになっている.か つ (10.2) の $k - k_0 = h$ の式は $k_0 \ge k$ の 2 個の波数ベクトル点 A がこの の始 Brillouin zone boundaryにのっていることをしめしている.

上記はエワルドの構成はさらに以下のように一般化される.すなわち,いままでは $\xi = h, \eta = k, \zeta = \ell$ の整数値のみ,すなわち逆格子点のみ考えた.しかし逆格子内で逆格子点でないところでは ξ, η, ζ は一般に整数値よりずれる.したがって (5.5)の Laue の条件からずれるので (5.1)で与えられるこの方向の散乱 X 線は弱い.しかしその強度は一般式 (4.2)で計算はできる.これに対応して逆格子内の各点に予め濃淡をつけておくと大変都合がよい.すなわち,

逆格子内の任意点 $(\xi\eta\zeta)$ に,一般強度式 (4.2) の $I(\xi\eta\zeta)$ の強度に比例し た濃淡をつけておくと,この逆格子内でエワルドの反射球でくり抜かれ た球面上の部分の濃淡を,発散点 A よりフイルム上にプリントしたもの が X 線回折写真である.

というようにきわめて一般化される(熱振動に基づく diffuse pattern など).

11 強度と消滅則 (Extinction Law)

Laue の条件 (5.5) を満足して強い反射 X 線を出すときは,一般強度式 (4.2) における Laue 関数すなわち (4.4) は

$$\xi = h, \ \eta = k, \ \zeta = \ell \quad \mathcal{C} \quad G_1(h)G_2(k)G_3(\ell) = L^2 M^2 N^2 \tag{11.1}$$

になり, $(hk\ell)$ の組み合わせ, したがって散乱角 χ の如何によらず一定値を与える. すなわち Laue 関数, または Laue の条件は強い回折 X 線が出てもよい方向だけは規定するが, その強度に関しては何もいえない.

反射 X 線の相対強度を与えるものは (4.2) の残りの部分である.このうち I_e の部分は, $r \ge \chi$ がすぐわかるので,観測強度に I_e の逆数をかけた補正された観測強度は (4.5) の

$$|F(hk\ell)|^2 = \left\{\sum_{j=1}^n f_j \cos 2\pi (hx_j + ky_j + \ell z_j)\right\}^2 + \left\{\sum_{j=1}^n f_j \sin 2\pi (hx_j + ky_j + \ell z_j)\right\}^2$$
(11.2)

に比例する.ただしnは単位格子中の原子数.まずSlideを観察してみよう. Slide 4^{\P} の P-8 は縦長の矩形単位格子で, P-9 は同じ大きさの縦長の矩形単位格子の中の 中心 $(\frac{1}{2}, \frac{1}{2})$ の所に1個原子が追加されている.

見所: P-9の回折斑点では, P-8の回折斑点が1つおきに消えている点を調べる. いまの場合は同種の原子だけの場合に相当するから(11.2)は,2次元に直して

$$|F(hk)|^{2} = f^{2}|F_{S}(hk)|^{2}, \quad |F_{S}(hk)|^{2} = \{\sum_{j} \cos 2\pi (hx_{j} + ky_{j})\}^{2} + \{\sum_{j} \sin 2\pi (hx_{j} + ky_{j})\}^{2}$$
(11.3)

となる.さらに Slide では小円の孔による光の回折であるから,(6.5), (6.7) でしたように, $I_ef^2 \to B(\chi)$ におきかえられる.

$$P-9$$
では (00) に 1 個の原子があるだけであるから $|F_S(hk)|^2 = 1$ (11.4)

であるが P-9 ではさらに $\left(\frac{1}{2},\frac{1}{2}\right)$ にも原子があるから

$$|F_S(hk)|^2 = \{1 + (-1)^{h+k}\}^2 + 0 = \begin{cases} 4 & h+k \text{ が偶数のとき} \\ 0 & h+k \text{ が奇数のとき} \end{cases}$$
(11.5)

この結果 P-8 の回折斑点は, P-9 では1つおきに消える.このように h, k, l の間にある 特定の関係があるとき, Laue の条件からは反射 X 線が出てもよい反射 X 線が0 になって 消滅することを強度に関する消滅則という.実際の結晶では格子構造に関する消滅則は以 下のようになる.

- (1) 単純格子 消滅則なし.
- (2) 底面心格子 h+k が奇数のとき(P-9 と同じ)
- (3) 体心格子 $h+k+\ell$ が奇数のとき
- (4) 面心格子 h, k, ℓ に奇数と偶数がまざっているとき.

たとえば体心格子では (x_j, y_j, z_j) にある原子があれば $(x_j + \frac{1}{2}, y_j + \frac{1}{2}, z_j + \frac{1}{2})$ にも同種の 原子がある構造であるから,この対については f_j は同じであるから

$$\begin{cases} f_{j}[\cos 2\pi(hx_{j} + ky_{j} + \ell z_{j}) + \cos 2\pi\{h(x_{j} + \frac{1}{2}) + k(y_{j} + \frac{1}{2}) + \ell(z_{j} + \frac{1}{2})\} \\ &= f_{j}\cos 2\pi(hx_{j} + ky_{j} + \ell z_{j})\{1 + (-1)^{h+k+\ell}\} \\ f_{j}[\sin 2\pi(hx_{j} + ky_{j} + \ell z_{j}) + \sin 2\pi\{h(x_{j} + \frac{1}{2}) + k(y_{j} + \frac{1}{2}) + \ell(z_{j} + \frac{1}{2})\} \\ &= f_{j}\cos 2\pi(hx_{j} + ky_{j} + \ell z_{j})\{1 + (-1)^{h+k+\ell}\} \end{cases}$$

$$(11.6)$$

[¶]P-8 は長方格子, P-9 は面心長方格子

となる.このように (11.2) のすべての対について $\{1 + (-1)^{h+k+\ell}\}$ の因子が出るので

$$|F(hk\ell)|^{2} = \{1 + (-1)^{h+k+\ell}\}^{2} [\{\sum_{j=1}^{n/2} \cos 2\pi (hx_{j} + ky_{j} + \ell z_{j})\}^{2} + \{\sum_{j=1}^{n/2} \sin 2\pi (hx_{j} + ky_{j} + \ell z_{j})\}^{2}]$$
(11.7)

となり, $h + k + \ell$ が奇数で消滅する. $\{1 + (-1)^{h+k+\ell}\}^2$ のような,構造上すべてに共通につく因子を幾何学的構造因子という.(International Table 参照). Slite 5^{||}の P-10 では(00) に1個の原子があるだけなので $|F_S(hk)|^2 = 1$

P-11 では (00) と $(\frac{1}{3}, \frac{1}{2})$ の位置に 2 個原子があるから

$$|F_S(hk)|^2 = \{1 + (-1)^k \cos h 120^\circ\}^2 + \{0 + (-1)^k \sin h 120^\circ\}^2 = 2\{1 + (-1)^k \cos h 120^\circ\}$$
(11.8)

P-12 では
$$(00)$$
 と $(\frac{1}{3}, \frac{1}{2})$ と $(\frac{2}{3}, \frac{1}{2})$ に 3 個原子があるので

$$|F_S(hk)|^2 = \{1 + (-1)^k [\cos h120^\circ + \cos h240^\circ]\}^2 + \{\sin h120^\circ + \sin h240^\circ\}^2 = \{1 + (-1)^k 2\cos h120^\circ\}^2$$
(11.9)

(11.8) と (11.9) の結果を表 1,表 2 に与え,その 強度分布の模式図を図 15 に与える.P-10 の回折 斑点が P-11, P12 でどのように強度が変わるか を調べよ.

表1 (11.8) 式 表2 (11.9) 式

$k \setminus h$	3n	$3n \pm 1$	$k \setminus h$	3n	$3n \pm 1$
偶数	4	1	偶数	9	0
奇数	0	3	奇数	1	4

テーマ4 回折斑点の強度より単位格子内の原子配列がわかる (11.10)

12 基本的な撮影方法

前節で述べたことより,X線の反射線をできるだけ多く出してこれを撮影するためには, 反射球上に逆格子点ができるだけ多くのるように工夫しなければならない.単結晶を任意 の位置において,任意の方向から単色X線を入射させても,逆格子点が反射球面上にたま たまのるチャンスは少ない.このチャンスを増すためには

i) 単結晶を動かして,逆格子点がかならず反射球を貫くようにする.

ii) 多結晶体を用いて, 逆格子点が反射球上にのるチャンスをふやす.

iii) 単結晶を用いるが,反射球に厚みをもたせて逆格子点を含みやすくする.

(12.1)

^{||}P-10 は単位格子に1つ, P-11 は2個, P-12 は3個の矩形格子

13 粉末結晶法とDebye-Scherrer 環

この方法は (12.1) の ii) の原理に 従ったものである.すなわち,あら ゆる向きをもった無数の微結晶の集 合体である粉末試料に単色 X 線を入 射させる方法である.図16にしめす ように,各微結晶のある ($hk\ell$) 面の 逆格子点は,Oを中心として半径が 1/dである球面上に一様に分布して いる.ゆえにこの球とエワルドの反 射球 A との交線である小円 N₁N₂ 上 に逆格子点をもつ微結晶の ($hk\ell$) 面 は入射 X 線を反射する.その反射方 向は,小円 N₁N₂ を底とし,A を頂点 として,半頂角が $\chi = 2\theta$ である円錐 A の各母線に平行にOより発射する.

図 16: Debyr-Scherrer 環の反射条件

ゆえに O より L の所に直射線に垂線においた平面フイルム上には,円錐 O と平面の切り 口として,直射点 O'を中心とした円図形が得られる.その半径 r は図より

$$r = L \tan 2\theta \tag{13.1}$$

で与えられる.この円を Debye-Scherrer 環という.これより求めた θ を Bragg 式

$$2d\sin\theta = \lambda$$
 ((3.2) の n は d/n として改めて d とした) (13.2)

に代入して面間隔 d が求められる $(h, k, \ell$ の最大公約数が n になる).面指数 $(hk\ell)$ が変われば d が変わり,従って対応する Bragg 角 θ が変わり,(13.1) で r が変わるから,得られる回折写真は O'を中心とする同心円図形になる.

14 繊維構造と繊維写真

同じく (12.1) の ii) の原理に従うものとして,繊維構造をもった多結晶体である繊維に対して単色 X 線を用いる.粉末試料では,各微結晶の向きはあらゆる向きを一様にとったから Debye 環を与えたが,繊維ではある向きをとる微結晶がない場合であるから,この向きに対応して Debye 環の一部が欠除した写真,すなわち弧状図形になる.どのようにある方向が欠除するかは場合場合によってさまざまであるが,一つの典型的な場合として2重回転に相当する分布をもつ繊維について述べる.このようなときまず逆格子分布をしるため,図 17 にしめすように,半径 1/d の位置球を考える.繊維軸を Y 軸として,微結晶のある軸たとえば b が Y 軸と一定角 φ の角を ρ とすれば,これは vcb のまわりに一様分布をするから,その逆格子点分布は B を中心とした小円 B となる.この円を網面円という.どの b 軸にも網面円が付随するからこれらは図の網面帯をぬりつぶす.この網面帯以外に

は, (hkl) 面の逆格子点は分布しない.

このような逆格子点分布をもった繊維に,繊維軸 Y に垂直に単色 X 線を入射すると図 18 にしめすように,反射球と位置球の交線として,位置球上に小円 N₁N₂ が得られる.

これを反射円という.反射円と 網面帯の交線 $\widehat{N_1N_2}$ に対して, 入射 X 線に垂直においた平面 フイルムには,デバイ環に相当 する円 $\operatorname{P_1P_2}$ の弧状図形がえ られその角範囲は

$$\begin{cases} \cos \delta_1 = \frac{\cos(\varphi - \rho)}{\cos \theta} \\ \cos \delta_2 = \frac{\cos(\varphi + \rho)}{\cos \theta} \\ (14.1) \end{cases}$$

図 17: 網面帯

図 18: 繊維構造の反射条件

で与えられる.分布が左右対称で,かつ $(\bar{h}, \bar{k}, \bar{\ell}$ も考えると上下も対称になるから,実際の図形は4つの弧状図形になる.

15 回転結晶法と振動結晶法

前節の繊維構造は、単結晶を b 軸のまわりにすみやか回転しながら、この b 軸を Y 軸に 対して φ だけ傾けて、 φ を一定に保ちつつ Y 軸のまわりにゆるやかに回転すれば同じ効 果を与える.このとき $\varphi = 0$ とすれば Y 軸と b 軸は一致して、単に b 軸を回転軸として 単結晶を回転させながらこの回転軸に垂直に単色 X 線を入射させて撮影法になる.

これを回転結晶法という.全回転でな く,ある特定の角範囲内だけ往復回転 さす方法を振動結晶法という.回転結 晶法ではある $(hk\ell)$ 面の逆格子点もま た結晶の回転につれて Y 軸のまわり に小円を画くから,この小円と反射 球の交点に相当して反射 X 線を出す. したがって (12.1) のi)の原理に叶う 方法である.したがって Debye 環上 (14.1) で $\varphi = 0$ として

$$\cos \delta_1 = \cos \delta_2 = \frac{\cos \rho}{\cos \theta} \qquad (15.1)$$

の角のところに回折斑点が記録され

図 19: 回転結晶法

る.ゆえに全体として4点図形になる.別の観点から図19を考える.点列bより図9と同様 E_{k}^{b} 平面が考えられる.さらに点列aがあるから E_{h}^{a} との交線として $Q_{2}R_{2},Q_{1}R_{1},Q_{0}R_{0}$ などの線 (図11参照)が考えられる.点列cのため,これらの線と E_{ℓ}^{c} の交点として・印が得られ,これが逆格子点である.これらの逆格子点をもった E_{k}^{b} 平面が結晶の回転ととも

に回転する.ある位置でそのN点が反射球上にのると \overrightarrow{AN} に平行に \overrightarrow{OP} 方向に反射X線を出す.いまの場合入射X線はbに垂直であるから, E_k^b 平面と反射球できます円錐Aは図7のような状態になっている.その結果(5.3)または(5.5)でbに対応する式では $\omega_2 = 90^\circ$ になるから

$$b\cos\sigma_2 = b\sin\tau_k = k\lambda \tag{15.2}$$

となる.したがって回折斑点 P は,円錐 A の頂点 A を O に平行移動した円錐 O と平面フ イルムとの交線である双曲線上になければならない.図19より, P のフイルムの座標を (x,y)として次の関係を得る.

$$\cos \delta = \frac{y}{\sqrt{x^2 + y^2}}, \ \sin 2\theta = \frac{\sqrt{x^2 + y^2}}{\sqrt{L^2 + x^2 + y^2}}, \ \cos \psi = \frac{L}{\sqrt{L^2 + x^2}} \\
\sin \tau_k = \frac{y}{\sqrt{L^2 + x^2 + y^2}} = \sin 2\theta \cos \delta$$
(15.3)

このような双曲線フイルム上では実際には見られないが,結晶が回転するにつれて, E_k^b 上の各逆格子点がつぎつぎに反射球を貫く度に双曲線上の異なった位置に回折斑点を与える.その結果これらの回折斑点をつないだとき双曲線になっている.このような線を層線(Layer line)といい,k = 0では直射点 O'を通る直線になりとくに赤道線 (equator)といわれ, $k \neq 0$ では双曲線になり $k = \pm 1, \pm 2, \ldots$ に対応して上下対称に第k次層線を与える.

一般には繊維軸はつねに b 軸とは限らず, [p, q, r] 方向である場合を考えよう.この方向の周期を I 隔てた 2 個の散乱体から出る 2 次波の光路差 Δ_I は (5.5) を参考として

 $\Delta_I = I \cos \sigma = I \sin \tau = m\lambda \qquad (15.4)$

$$\Delta_I = \mathbf{I} \cdot \mathbf{s} = \mathbf{I} \cdot (\mathbf{s} - \mathbf{s}_0) = (p\mathbf{a} + q\mathbf{b} + r\mathbf{c}) \cdot (\mathbf{s} - \mathbf{s}_0) = (ph + qk + r\ell)\lambda$$
(15.5)

 $ph + qk + r\ell = m \tag{15.6}$

となる. (15.4) を Polanyi の式, I を繊維周期という. (15.2) は

$$p = 0, q = 1, r = 0$$
 $m = k$ (15.7)

である特別な場合になっている.

Slide 6**で P-13 は 1 つの単結晶で, P-14 は同じ構造で微結晶多数を鉛直軸を中心として ±15 °の角範囲に分布させた繊維構造をもつもので, P-15 はあらゆる向きをとらせた 粉末に相当する.その結果 P-13 の回折像は縦長の矩形配列であるが, P-14 ではこれらの 点を中心としとして ±15 °に伸びた弧状になり, P-16 では同心円図形になる.

テーマ 5 回折斑点の弧状の伸びより多結晶体内の微結晶の分布がわかる. (15.8)

16 ラウエ法

いままでの方法は単色 X 線を用いて, 試料としては多結晶体を用いたり, 単結晶を回転 させたりして, 逆格子点がかならず反射球上にのるように工夫した.これに反してラウエ 法では静止した単結晶を用いて, $\lambda_1 \leq \lambda \leq \lambda_2$ の範囲の波長を含んだ連続 X 線を用いる.

^{**}P-13 は単結晶モデル, P-14 は繊維構造モデル, P-15 は多結晶モデル.

すなわち図 20 にしめすように, $1/\lambda_1 \ge 1/\lambda_2$ に相当 する発散点 A_1, A_2 を中心とする 2 個の反射球に相当 する波長はかならずある.すなわち (12.1) の iii) の 原理に従って反射球に厚味をもたせて, この中に静止 した逆格子点をとらえるのである.この中にとらえ られた逆格子点 H は, これと O を結ぶ線の垂直 2 等 分面と入射方向との交点に A をもった半径 AH=AO の反射球上にのるから, 各回折斑点を与える X 線の 波長はさまざまな値をとる.

図 20: ラウエ法の反射範囲

17 ラウエ関数と結晶の大きさ

(4.4) で与えたラウエ関数 $G_1(\xi) = \sin^2 \pi L\xi / \sin^2 \pi\xi$ は L の値に対し て図 21 のような曲線になる.すな わち 2 個の主極大の間に (L-2) 個 の副極大をもち, L がますにつれ て副極大の相対強度は弱くなると ともに,主極大の幅がせまくなっ て鋭さを増してゆく. Slide 7 P-16 ~ P-19 で L = 1, 2, 4, 8 となり主極大がこの順で 鋭くなる.

図 21: ラウエ関数のサイズ効果

テーマ 6^{††} 回折斑点の鋭さより微結晶の大きさがわかる. (17.1)

18 まとめ

- (1) 点列 a の逆格子は, a に垂直で間隔が 1/a である平行平面群 E^a である.
- (2) 2次元点列(*a*,*b*)の逆格子は,点列*a*の逆格子 E^{*a*}_{*h*}の平面群と,点列*b*の逆格子 E^{*b*}_{*k*}
 平面群との交点である平行線群である.この平行線群の切り口の平行四辺形は,も
 との平行四辺形単位格子と逆の関係にある.
- (3) 結晶の逆格子は,点列a, b, cのそれぞれの逆格子である E_h^a, E_k^b, E_ℓ^c 平行平面群の交点 で与えられる.この1点 $H(hk\ell)$ に到るベクトルhは,もとの結晶の $(hk\ell)$ 面の垂線 方向と一致し,その大きさはこの面の面間隔dの逆数に等しい.

^{††}Slide 7 はサイズが 1×1,2×2,4×4,8×8 の矩形格子

- (4) 回折写真は,エワルドの反射球でくりぬいた逆格子の濃淡を発散点からフイルムに 投影したものである.
- (5) 回折斑点の位置から単位格子の形と大きさがきまる.
- (6) 回折斑点の強度から単位格子内の原子配列がきまる.
- (7) 回折斑点の弧状の伸びより,多結晶体内の微結晶の分布がわかる.
- (8) 回折斑点の鋭さより微結晶の大きさがわかる.

A 付録:各式の導入

(1.1)の導入 原点にある電子に入射する電磁波 X 線の交番電場を Y' 方向に $E_0 e^{2\pi i \nu t}$ とすると,これによる電子の加速度 α は Y' 方向をとって

$$m\alpha = -eE_0e^{2\pi i\nu t}$$
の運動方程式より $\alpha(t) = -(e/m)E_0e^{2\pi i\nu t}$ (A.1)

図 1 の O 点で加速度 $\alpha(t)$ をもつ荷電子 (電子) は外に第 2 次電磁波を放射する.この 2 次 波は O より距離 r,Y' より極角 φ の P 点に到着するには r/c 秒を要する.かつそのときの 電気ベクトルは \overrightarrow{OP} に垂直で, $Y' \ge \overrightarrow{OP}$ を含む面内にあってその大きさ E は

$$E(t+\frac{r}{c}) = \frac{e}{c^2 r} \alpha(t) \sin \varphi = -E_0 \frac{e^2}{mc^2} \frac{1}{r} \sin \varphi e^{2\pi i\nu t}$$
(A.2)

で与えられる.この関係自身は電磁気学の retarded potential の項を参照されたい.電磁 波の強度は $(c/4\pi)|E|^2$ に等しいから

$$I(\varphi, r; t + \frac{r}{c}) = \frac{c}{4\pi} |E(t + \frac{r}{c})|^2 = (\frac{c}{4\pi} E_0^2) \frac{e^4}{m^2 c^4} \frac{1}{r^2} \sin^2 \varphi = I_0 \frac{e^4}{m^2 c^4} \frac{1}{r^2} \sin^2 \varphi \qquad (1.1)$$

(1.2) 式の導入と球面三角形の公式

図 22 にしめすように,球面上3 個の大円よりなる球面三角形 ABC を 考える.大円 AB 面と大円 AC 面のなす角を θ として, \widehat{BC} , \widehat{CA} , \widehat{AB} の球の中心にはる角をそれぞれ α , β , γ とすると,これらの角の間 には

$$\cos\theta = \frac{\cos\alpha - \cos\beta\cos\gamma}{\sin\beta\sin\gamma}, \quad \theta = 90 \,\, {}^{\circ}\mathcal{C} \,\, \cos\alpha = \cos\beta\cos\gamma \,\,\, (A.3)$$

図2では $\theta = 90$ °, $\alpha = \varphi$, $\beta = 90$ °- χ , $\gamma = \omega$

図 22: 球面三角

$$\cos\varphi = \sin\chi\cos\omega \tag{A.4}$$

$$\frac{1}{\pi} \int_0^\pi \sin^2 \varphi d\omega = \frac{1}{\pi} \int_0^\pi (1 - \sin^2 \chi \cos^2 \omega) d\omega = \frac{1}{\pi} (\pi - \sin^2 \chi \frac{\pi}{2}) = \frac{1 + \cos^2 \chi}{2}$$

(2.1) 式の導入と光路差の式

図 6 よりわかるように, 2 個の散乱体の隔たりのベクトルを *a* とし,入射方向の単位ベクトルを *s*₀,散乱方向の単位ベクトルを *s*(紙面より手前に出ている)とすれば O および P₁より *s* 方向に出る 2 次波の光路差 Δ は

$$\Delta = ON_1 - M_1 P_1 = \boldsymbol{a} \cdot \boldsymbol{s} - \boldsymbol{a} \cdot \boldsymbol{s}_0 = \boldsymbol{a} \cdot (\boldsymbol{s} - \boldsymbol{s}_0)$$
(A.5)

すなわち隔たりのベクトルに $s = s_0$ ベクトルをかければ光路差が得られる.

図 23 にしめすように, s₀とs を含む平面内で, sとs₀の2 等分線を y 軸とする.

この \overrightarrow{OC} 方向を *z* 軸として, *y* 軸と *z* 軸に垂直に *x* 軸をとって図 24 に再録する. O より $\overrightarrow{OP} = \rho$ の所の電子雲の密度を $u(\rho)$ とすると, ρ の極座標を (ρ, θ, φ) として

$$\begin{split} \Psi(\boldsymbol{s} - \boldsymbol{s}_{0}) &= \sqrt{I_{e}} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} u(\rho\theta\varphi) \exp\{2\pi i \frac{(\boldsymbol{\rho} \cdot \overline{\boldsymbol{s}} - \boldsymbol{s}_{0})}{\lambda}\} \rho^{2} \sin\theta d\varphi d\theta d\rho \\ &= \sqrt{I_{e}} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} u(\rho\theta\varphi) \exp\{\frac{2\pi i}{\lambda} (\rho \ 2 \sin\frac{\chi}{2}\cos\theta)\} \rho^{2} \sin\theta d\varphi d\theta d\rho \\ &= \sqrt{I_{e}} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} u(\rho\theta\varphi) \exp(i\rho s\cos\theta) \rho^{2} \sin\theta d\varphi d\theta d\rho \end{split}$$

これ以上は $u(\rho\theta\varphi)$ の関数を与えないと積分は行えない.しかし電子雲が球状分布とする と u は ρ だけの関数で $u(\rho)$ となるから, φ と θ は以下のように積分される.

$$\Psi(\boldsymbol{s} - \boldsymbol{s}_0) = \sqrt{I_e} \int_0^\infty \rho^2 u(\rho) \int_0^\pi 2\pi \sin\theta \exp(i\rho s\cos\theta) d\theta d\rho$$
$$= \sqrt{I_e} \int_0^\infty 2\pi \rho^2 u(\rho) \left[\frac{-e^{i\rho s\cos\theta}}{i\rho s}\right]_0^\pi d\rho = \sqrt{I_e} \int_0^\infty 4\pi \rho^2 u(\rho) \frac{\sin s\rho}{s\rho} d\rho \qquad (2.1)$$

(4.2),(4.4),(4.5),(5.1)の導入

原点より第 (pqr) 番目の単位格子内の第 j 原子による散乱振幅への寄与は

$$\boldsymbol{R}_p = p\boldsymbol{a} + q\boldsymbol{b} + r\boldsymbol{c}, \quad \boldsymbol{r}_j = x_j\boldsymbol{a} + y_j\boldsymbol{b} + z_j\boldsymbol{c} \tag{A.7}$$

として
$$\sqrt{I_e f_j} \exp\{2\pi i (\boldsymbol{R}_p + \boldsymbol{r}_j) \cdot (\boldsymbol{s} - \boldsymbol{s}_0)/\lambda\}$$
 (A.8)

で与えられる.結晶全体による散乱振幅 Ψ は,単位格子内の n 個の原子および存在する すべての単位格子にわたって (A.8) を加えればよい.

$$\Psi(s) = \sqrt{I_e} \sum_{p=0}^{L-1} \sum_{q=0}^{M-1} \sum_{r=0}^{N-1} \sum_{j=1}^{n} f_j \exp\left\{2\pi i \frac{(\mathbf{R}_p + \mathbf{r}_j) \cdot (s - s_0)}{\lambda}\right\}$$
(A.9)

いま本文 (9.14) 式で定義される逆ベクトル a*, b*, c* を考えると (9.12) より

$$(\boldsymbol{a} \cdot \boldsymbol{a}^*) = (\boldsymbol{b} \cdot \boldsymbol{b}^*) = (\boldsymbol{c} \cdot \boldsymbol{c}^*) = 1$$
 (A.10)

$$(\boldsymbol{b} \cdot \boldsymbol{a}^*) = (\boldsymbol{c} \cdot \boldsymbol{a}^*) = (\boldsymbol{c} \cdot \boldsymbol{b}^*) = (\boldsymbol{a} \cdot \boldsymbol{b}^*) = (\boldsymbol{a} \cdot \boldsymbol{c}^*) = (\boldsymbol{b} \cdot \boldsymbol{c}^*) = 0 \quad (A.11)$$

いま $(s - s_0)/\lambda$ なるベクトルを逆ベクトルで表して

$$(\boldsymbol{s} - \boldsymbol{s}_0)/\lambda = \xi \boldsymbol{a}^* + \eta \boldsymbol{b}^* + \zeta \boldsymbol{c}^*$$
(A.12)

とおく.両辺に *a*, *b*, *c* をそれぞれかけて, (A.10),(A.11) をつかう使うと

$$\boldsymbol{a} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = \xi \lambda, \quad \boldsymbol{b} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = \eta \lambda, \quad \boldsymbol{c} \cdot (\boldsymbol{s} - \boldsymbol{s}_0) = \zeta \lambda$$
 (5.1)

を得る.また (A.7) と (A.12) をかけて, (A.10), (A.11) を使うと

$$\frac{(\boldsymbol{R}_p + \boldsymbol{r}_j) \cdot (\boldsymbol{s} - \boldsymbol{s}_0)}{\lambda} = (p\boldsymbol{a} + q\boldsymbol{b} + e\boldsymbol{c} + x_j\boldsymbol{a} + y_j\boldsymbol{b} + z_j\boldsymbol{c}) \cdot (\xi\boldsymbol{a}^* + \eta\boldsymbol{b}^* + \zeta\boldsymbol{c}^*)$$
$$= p\xi + q\eta + r\zeta + x_j\xi + y_j\eta + z_j\zeta$$
(A.13)

この結果を (A.9) に代入すると

$$\Psi(\xi\eta\zeta) = \sqrt{I_e} \sum_{p=0}^{L-1} e^{2\pi i p\xi} \sum_{q=0}^{M-1} e^{2\pi i q\xi} \sum_{r=0}^{N-1} e^{2\pi i r\xi} \sum_{j=1}^{n} f_j e^{2\pi i (\xi x_j + \eta y_j + \zeta z_j)}$$
(A.14)

この中の p に関する和は等比級数の和で

$$\sum_{p=0}^{L-1} e^{2\pi i p\xi} = \frac{1 - e^{2\pi i L\xi}}{1 - e^{2\pi i \xi}} = \frac{e^{\pi i L\xi} (e^{-\pi i L\xi} - e^{\pi i L\xi})}{e^{\pi i \xi} (e^{-\pi i \xi} - e^{\pi i \xi})}$$
$$= \frac{\sin \pi L\xi}{\sin \pi \xi} e^{\pi i (L-1)\xi} = \sqrt{G_1(\xi)} e^{\pi i (L-1)\xi} \to (4.4)$$
(A.15)

となり, また *j* に関する和は

$$F(\xi\eta\zeta) = \sum_{j=1}^{n} f_j e^{2\pi i(\xi x_j + \eta y_j + \zeta z_j)}$$

=
$$\sum_{j=1}^{n} f_j \cos 2\pi (\xi x_j + \eta y_j + \zeta z_j) + i \sum_{j=1}^{n} f_j \sin 2\pi (\xi x_j + \eta y_j + \zeta z_j) (A.16)$$

とおくと (4.5) 式が得られる. (A.15),(A.16) を用いて (A.14) をかき直すと

$$\Psi(\xi\eta\zeta) = \sqrt{I_e}\sqrt{G_1(\xi)G_2(\eta)G_3(\zeta)}e^{\pi i\{(L-1)\xi + (M-1)\eta + (N-1)\zeta\}}$$
(A.17)

(4.3)の導入 (9.6)と(9.10)より

$$\frac{1}{d^2} = h^2 = (ha^* + kb^* + \ell c^*)^2$$

= $h^2 a^{*2} + k^2 b^{*2} + \ell^2 c^{*2} + 2hk(a^* \cdot b^*) + 2k\ell(b^* \cdot c^*) + 2\ell h(c^* \cdot a^*)$ (A.18)

単斜晶系で b 軸が a と c に直交しているとすれば, (9.14)の定義より

$$|\boldsymbol{a}^{*}| = \frac{|\boldsymbol{b} \times \boldsymbol{c}|}{abc\sin\beta} = \frac{1}{a\sin\beta}$$
$$v = abc\sin\beta, \qquad |\boldsymbol{b}^{*}| = \frac{|\boldsymbol{c} \times \boldsymbol{a}|}{abc\sin\beta} = \frac{1}{b}$$
$$|\boldsymbol{c}^{*}| = \frac{|\boldsymbol{a} \times \boldsymbol{b}|}{abc\sin\beta} = \frac{1}{c\sin\beta}$$
$$\left| \left| \boldsymbol{c}^{*} \right| = \frac{|\boldsymbol{a} \times \boldsymbol{b}|}{abc\sin\beta} = \frac{1}{c\sin\beta} \right\}$$
(A.19)

かつ,
$$b^* \perp a^*$$
, $b^* \perp c^*$, $\angle \widehat{a^*c^*} = \pi - eta$

になるから

$$(\boldsymbol{a}^* \cdot \boldsymbol{b}^*) = (\boldsymbol{b}^* \cdot \boldsymbol{c}^*) = 0$$
, $(\boldsymbol{c}^* \cdot \boldsymbol{a}^*) = -\frac{\cos\beta}{ac\sin^2\beta}$ (A.20)

これらの関係を (A.18) に代入して

$$\frac{1}{d^2} = \frac{h^2}{a^2 \sin^2 \beta} + \frac{k^2}{b^2} + \frac{\ell^2}{c^2 \sin^2 \beta} - \frac{2h\ell \cos \beta}{ac \sin^2 \beta}$$
(A.21)

(4.3) では (A.12) を 2 乗して Bragg 式を使って求めたから h, k, ℓ の代わりに ξ, η, ζ になった. 幾何学的には整数でなくてもこれに対応する面,従ってその面間隔は同じ式できまる. Bragg 式を用いたのは,このような面でも仮想的に反射をすればと考えたのである.もちろん光路差は波長の整数倍でなくなっているから実際はその反射線の強度は 0 に近い.

(11.6),(11.7) 式の簡単な計算法

 $F(hk\ell)$ を(A.16)形で計算すると簡単である.体心格子の場合,対のものについて

$$e^{2\pi i(hx_j+ky_j+\ell z_j)} + e^{2\pi i\{h(x_j+\frac{1}{2})+k(y_j+\frac{1}{2})+\ell(z_j+\frac{1}{2})\}}$$

= $e^{2\pi i(hx_j+ky_j+\ell z_j)} \left[1+e^{\pi i(h+k+\ell)}\right]$
= $\{1+(-1)^{h+k+\ell}\}e^{2\pi i(hx_j+ky_j+\ell z_j)}$ (A.22)

$$F(hk\ell) = \{1 + (-1)^{h+k+\ell}\} \sum_{j=1}^{n/2} f_j e^{2\pi i (hx_j + ky_j + \ell z_j)}$$
(A.23)

(14.1)の導入 図 18 の右側にとり出してかいてある球面三角形に対して (A.3)の球面 三角形の公式を適用すればよい.